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Abstract. In this paper we introduce some terminology for comparing
the expressiveness of conceptual data modeling techniques, such as ER,
NIAM, PSM and ORM, that are finitely bounded by their underlying
domains. Next we consider schema equivalence and discuss the effects
of the sizes of the underlying domains. This leads to the introduction
of the concept of finite equivalence, which may serve as a means to a
better understanding of the fundamentals of modeling concepts (utility).
We give some examples of finite equivalence and inequivalence in the
context of ORM.

1 Schema Equivalence

When modeling a Universe of Discourse ([ISO87]), it is generally assumed that
we can recognize stable states in this Universe of Discourse, and that there are
a number of actions that result in a change of state (state transitions). This is
called the state-transition model. Furthermore we assume that the Universe of
Discourse has a unique starting state.

In mathematical terms, a Universe of Discourse U◦D consists of a set S of
states, a binary transition relation τ over states, and an initial state s0 ∈ S:

U◦D = 〈S, τ , s0〉

The purpose of the modeling process is to construct a formal description, (a spec-
ification) Σ of U◦D, in terms of some underlying formalism. This specification
will have a component S(Σ) that specifies S, a component τ (Σ) that specifies
τ , and a state s0(Σ) that is designated as the initial state s0.

The main requirement for specification Σ is that it behaves like U◦D. This
can be shown by a (partial) function h, relating the states from S(Σ) to the (real)
states S from U◦D such that h shows this similarity. Such a function is called
a (partial) homomorphism. If each state of U◦D is captured by the function h,
we call Σ a correct specification with respect to U◦D, as each state of U◦D has
a representation in Σ. In that case, the function h is surjective, and called an
epimorphism (see also [Bor78]).

Definition 1. We call h a partial homomorphism between Σ and U◦D if

1. h is a (partial) function h : S(Σ) → S
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Fig. 1. A correct specification

2. transitions commute under h:

∀s,t∈S(Σ)

[
〈s, t〉 ∈ τ (Σ) ⇔ 〈h(s), h(t)〉 ∈ τ

]

3. h maps the initial state of the specification onto the initial state of U◦D:

h(s0(Σ)) = s0

If h is surjective, we call h an epimorphism between Σ and U◦D.

We call an algebra A (partially) homomorphic with algebra B, if there exists
a (partial) homomorphism from A into B. If schema Σ is a description of A, then
we will also call Σ (partially) homomorphic with B. The notion of epimorphism
is extended analogously.

Note that in a correct specification Σ, a state of U◦D may have more than one
corresponding state in S(Σ). In that case we have a redundant representation
for the states of U◦D. Redundant representations are useful as they provide
opportunities for improvement of efficiency.

The disadvantage of a redundant representation is that we do not have a
description of U◦D that is free of implementation (representation) details. A
description can only be implementation independent if each state has a unique
representant. Such a description is called a conceptual schema in the context of
information systems. This is the case if the function h that relates Σ to U◦D is
bijective.

The expressiveness of a formal method M is introduced as the set of “U◦D”’s
it can model. This can be described by:

{
〈S(Σ), τ (Σ), s0(Σ)〉

∣
∣ Σ ∈ L(M)

}
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If we restrict ourselves in this definition to τ (Σ) = ∅, we get the so-called base
expressiveness of method M. The base expressiveness usually is the criterion
that is used intuitively when comparing different methods.

From the above definition of conceptual schema, the following definition of
schema equivalence can be derived.

Definition 2. Two specifications Σ and Σ′ are equivalent, Σ ∼=Σ′, if there ex-
ists a homomorphism h from Σ onto Σ′ such that h is a bijection.

2 Schema Equivalence in ORM

In this section we consider the base expressiveness of ORM. We focus on the
formal definition as for example specified in the Predicator Model (PM, see
[BHW91]), and discuss schema equivalence in that context. Within that context,
we may omit differences between ORM and PM.

Let Σ be an ORM schema, with underlying label type set L, then this schema
specifies the following set of states:

S(Σ) =
{
p | IsPopL(Σ, p)

}

A population p is a function assigning a set of instances to each object type in
schema Σ. The IsPopL predicate determines whether p is a proper population.
The population of label values is restricted to values of some domain D. We will
show that the base expressiveness strongly depends on the actual choice of D.
In this restricted sense the resulting state space of schema Σ is:

SD(Σ) =
{
p

∣
∣ IsPopL(Σ, p) ∧ ∀x∈L [p(x) ⊆ D]

}

Please note that we restrict ourselves to finite populations, i.e., populations
where each object type x has assigned a finite population (p(x) < ∞). Using
this definition we introduce the notion of domain equivalence.

Definition 3. Two ORM schemas Σ and Σ′ are domain equivalent over domain
D, denoted as Σ ∼=D Σ′, if they have equivalent state spaces:

SD(Σ)∼=SD(Σ′)

The sets A and B are called equivalent (A∼= B) if there exists a bijection from
A into B.

Note that being equivalent does not mean that both schemata are as suitable in
representing U◦D. For suitability we should take the complexity of the transition
into account. This complexity however is outside the scope of this paper.

A first result is that the underlying domain may be such expressive that any
two schemata based on that domain are equivalent:

Lemma 1. Let Σ and Σ′ be ORM schemas then:

D countably infinite ⇒ Σ ∼=D Σ′
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Proof: We will only give a brief outline of this proof. The important step is
to prove that the number of populations in a schema with a countable domain
is countable itself (assuming finite populations). This however, is true because
every population can be coded as a finite string by ordering the object types
in the schema at hand and listing their populations sequentially, according to
this ordering, separated by special separator symbols. Each such finite string can
uniquely be translated to a finite bitstring, which can be considered as a natural
number in binary representation. ���

�
�
	N

(INI )
p

Fig. 2. The most simple universal schema

We conclude that the expressiveness of ORM data structuring in the context
of a countably infinite domain is limited as all schemata are equivalent in that
case. Note that, in the context of countably infinite domains, this property holds
for most other data models as well. Each schema thus can be considered as a
universal schema, as it is expressive enough to “simulate” any other schema. The
analogon of a universal schema in the algorithmic world is the universal Turing
machine (see for example [CAB+72]). The most simple universal schema is shown
in figure 2. This simple schema can represent any population of any other schema,
by using the counting schema described in the proof above. The role of the unary
fact type is to exclude all elements from N that do not correspond to a valid
population of the simulated schema.

We restrict ourselves to a finite domain for label values. As a direct con-
sequence, schema Σ has a finite state space. We introduce the notion of finite
equivalence:

Definition 4. Two ORM schemata Σ and Σ′ are finite equivalent denoted as
Σ ∼=f Σ′, if they have an equivalent state space for equivalent finite underlying
domains, or if for all D and D’:

D ∼=D′ ∧ |D| < ∞ ⇒ SD(Σ)∼= SD′(Σ′)

Finite equivalence can be proven by the construction of a bijection between
the two state spaces of the schemas.

Example 1. The schemas Σ and Σ′ from figure 3, are finite equivalent.

Proof: The basic idea is to define a translation from instances from Σ to in-
stances from Σ′ such that we have a bijection between S(Σ) and S(Σ′). This
is achieved by relating identical instances of object types A, B and C in both
schemas and instances {p : a, q : b} in Pop(f) and {r : {p : a, q : b} , s : c} in
Pop(g) to one instance {t : a, u : b, v : c} in Pop(h).

Note the importance of the total role (the black dot) on predicator r in this
transformation. Its semantics is:

x ∈ Pop(f) ⇒ ∃y∈Pop(g) [y(r) = x]
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Fig. 3. Example of finite equivalence

Therefore, the total role makes it unnecessary to consider instances of fact type
f that do not contribute in fact type g. For a general definition of the semantics
of constraints in NIAM schemas, refer to [BHW91]. ��

Finite inequivalence can be proven by showing that the state spaces of the
underlying schemas are not equal in size.

Example 2. If we omit the total role from schema Σ in figure 3, the schemas are
not finite equivalent.

Proof: Let a, b and c be the population size of A, B and C respectively. The
number of populations of fact type f amounts to:

ab∑

i=0

(
ab
i

)
= 2ab

Now suppose f is populated with i tuples, then for g we can have 2ic different
populations. The number of populations of Σ therefore amounts to:

ab∑

i=0

(
ab
i

)
2ic =

n∑

i=0

(
ab
i

)
(2c)i

= (1 + 2c)ab

On the other hand, the number of populations of Σ′ equals 2abc = (2c)ab. ��
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Fig. 4. Another example of finite equivalence



Schema Equivalence as a Counting Problem 735

Example 3. In figure 4, another example of finite equivalence is shown.

Proof: The main observation is that instances occurring in predicator p of
schema Σ are to be mapped onto identical instances in the population of fact
type g in schema Σ′. Instances of object types A and B in both schemas are
again related via an identical mapping. Instances in fact type f in schema Σ are
related to identical instances in fact type h in schema Σ′. ��
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Fig. 5. Example of finite inequivalence

Example 4. In figure 5 two schemas are depicted, which are not finite equivalent.

Proof: It is not hard to see that the number of populations in Σ with |Pop(A)| =
a and |Pop(B)| = b is (2b)a, while the number of populations in Σ′ with the same
restriction is (2b − 1)a. ��

3 An Upper Bound for Populatability

A data modeling technique is called finitely bounded by its underlying domains,
if each schema from that technique allows for a finite number of populations, in
case of a finite domain of label values.

Definition 5. The populatability of a schema Σ is:

mD(Σ) =
∥
∥SD(Σ)

∥
∥

As each schema can be populated by the empty population ([BHW91]), an im-
mediate consequence is:

Lemma 2.

‖D‖ = 0 ⇒ ∀Σ∈L(M)

[
mD(Σ) = 1

]

Definition 6. Method M is called finitely bounded by its underlying domains
D if:

‖D‖ < ∞ ⇒ ∀Σ∈L(M)

[
mD(Σ) < ∞

]

In this section we derive an upper bound on the populatability of a schema.
In order to simplify the derivation, we restrict ourselves to fact schemata, i.e.,
schemata Σ without entity types (i.e., E(Σ) = ∅).
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Lemma 3.

∀Σ∃Σ′ [Σ ≡ Σ′ ∧ E(Σ′) = ∅]

Proof: Replace each entity type by a fact type, corresponding to its identifica-
tion. If the identification of entity type x consists of the convolution of k path
expressions (i.e., mult(x) = k, see [HPW93]), then this replacement leads to the
introduction of a k-ary fact type. The resulting schema is denoted as de(Σ).
Then obviously Σ ≡ de(Σ) and E(de(Σ)) = ∅. ��

The number p(de(Σ)) of predicators of schema de(Σ) is found by:

Lemma 4.

p(de(Σ)) = p(Σ) +
∑

x∈E(Σ)

mult(x)

Proof: Obvious!
Next we introduce a series {Np}p≥0 of schemata (see figure 6), consisting of

a single p-ary fact type over some label type L. These schemata are the best
populatable schemata among schemata with the same number of predicators.

��

Theorem 1.

‖D‖ > 1 ⇒ ∀Σ

[
m(Σ) ≤ m(Np(de(Σ)))

]

Proof: First we remark m(Σ) = m(de(Σ)). Next we use the fact that a schema
becomes better populatable by undeeper nesting of (at least) binary fact types.
This is shown in lemma 5. Furthermore, merging fact types improves populata-
bility (see lemma 7). By repeatedly applying these steps, schema N

p(de(Σ)) will
result. ��

. . . . . . . . .
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Fig. 6. Best populatable schemata

Lemma 5. Consider the schemata Σ1, Σ2 and Σ3 from figure 7, then:

‖D‖ > 1 ⇒ m(Σ1) ≤ m(Σ2) ≤ m(Σ3)
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Table 1. Growth of populatability

n m(Σ1) m(Σ2) m(Σ1)
0 1 1 1
1 3 3 2
2 21 81 256
3 567 19683 134217728
4 67689 43046721 1.845E+19

Proof: Let ‖D‖ = n, then:

m(Σ1) =
n∑

i=0

(
n
i

) i∑

j=0

(
i
j

)
2(j2)

≤
n∑

i=0

(
n
i

) i∑

j=0

(
i2

j2

)
2(j2)

≤
n∑

i=0

(
n
i

) i2∑

j=0

(
i2

j

)
2j = m(Σ2)

m(Σ2) =
n∑

i=0

(
n
i

) i2∑

j=0

(
i2

j

)
2j

=
n∑

i=0

(
n
i

)
3(i2)

m(Σ3) =
n∑

i=0

(
n
i

)
2(i3)

The result follows from the observation:

n > 1 ⇒ 2(n3) > 3(n2)

��The populatability of schemata {Np}p≥0 grows extremely fast.

Lemma 6.

m(Np) =
n∑

i=0

(
n
i

)
2(ip)

Lemma 7.

m(Np) ∗ m(Nq) ≤ m(Np+q)



738 H.A. Proper and Th.P. van der Weide

n :

(
n
i

) �
�

�
	i

i :

(
i
j

) �
�

�
	j

�
�

�
	2(j2)

Σ1

n :

(
n
i

) �
�

�
	i

i2 :

(
i2

j

) �
�

�
	j

�
�

�
	2j

Σ2

n :

(
n
i

) �
�

�
	i

�
�

�
	2(i3)

Σ3

Fig. 7. Transformation steps

From theorem 1 we conclude that ER, NIAM and ORM are finitely bounded
by their underlying domains.

4 Conclusions

In this paper we introduced some fundamental notions for the expression and
comparison of the expressive power of conceptual schemata. In practise this will
not be very helpful. However, by gaining a deeper understanding of the basic
limitations of modeling techniques, we may be better equipped to improve state-
of-the-art techniques.
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